generic header image

The accuracy of geographical positioning systems

Published on August 18, 2014 in Fleet Management by Serge Pavlov |  1 minute read


Geographical positioning systems (GPS) have become a ubiquitous part of our lives. How good is a modern day positioning system in measuring coordinates?

Geographical positioning systems (GPS) have become a ubiquitous part of our lives. Whether it is through their involvement with routing applications or fleet management systems, we are often taking the technology and the results it generates for granted.

Management by Measurement?

So how good is a modern day positioning system in terms of measuring geographical coordinates? Can we reliably base our decision-making on the data it provides?

 

For the U.S. government-operated and most widely used commercial positioning system, high-quality receivers provide better than 2.2 meter horizontal accuracy in 95% of cases, and better than 3 meter accuracy at a 99% confidence level [1]. Accuracy tends to be higher in open areas with no adjacent tall buildings (also known as Urban Canyons) or bridges/tunnels to obstruct or interfere with the signals.

Developments in improving the quality of geographical positioning:

  • The ongoing GPS modernization program is adding new civilian signals and frequencies to the GPS satellites [2].
  • Integration of two or more positioning systems (i.e. GPS & GLONASS) within single receiver [3].
  • Low cost “hybrid” systems that are capable of continuous reliable positioning even when GPS signals are not available. This is achieved through the integration of GPS with inertial sensors that would override invalid or unavailable GPS [4].

With respect to accuracy and the possibility of sudden changes in positioning error rates, there are geographical positioning system limitations that should always be taken into account. These limitations are essential to consider for alarm-sensitive applications like security/geofencing systems, posted road speed detection/risk management, or any kind of automatic control system. When the issue becomes apparent, steps must be taken to reduce GPS accuracy dependency.

 

Contact Geotab if you are experiencing frequent GPS accuracy-related issues to discuss details and attain help in resolving the problem.

References:

[1] National Coordination Office for Space-Based Positioning, Navigation, and Timing. (2014, March 17). GPS Accuracy. Retrieved from gps.gov: http://www.gps.gov/systems/gps/performance/accuracy/

[2] National Coordination Office for Space-Based Positioning, Navigation, and Timing. (2014, March 17). GPS Accuracy. Retrieved from gps.gov: http://www.gps.gov/systems/gps/performance/accuracy/

[3] GPS World Staff. (2014, January 8). Quad-Constellation Receiver: GPS, GLONASS, Galileo, BeiDou. Retrieved from GPS World: http://gpsworld.com/quad-constellation-receiver-gps-glonass-galileo-beidou/

[4] Carlos III University of Madrid. (2013, February 12). Precision of GPS in cities improved by 90 percent. Retrieved from ScienceDaily: http://www.sciencedaily.com/releases/2013/02/130212121858.htm


If you liked this post, let us know!


Disclaimer

Geotab's blog posts are intended to provide information and encourage discussion on topics of interest to the telematics community at large. Geotab is not providing technical, professional or legal advice through these blog posts. While every effort has been made to ensure the information in this blog post is timely and accurate, errors and omissions may occur, and the information presented here may become out-of-date with the passage of time.

Get industry tips and insights

Sign up for monthly news and tips from our award-winning fleet management blog. You can unsubscribe at any time.

Republish this article for free

Other posts you might like

Geotab Connect illustration image

Geotab 2024 discussion recap: A Data-Driven Journey in Fleet Maintenance

This session at Geotab Connect 2024 highlighted best practices to use data for an effective fleet care plan.

March 11, 2024

Two women in a business meeting sitting in front of charts and a laptop

Empowering Success: Unleashing the Domino Effect of Connected Women

Insights from Women in Fleet Leadership at Geotab Connect

February 16, 2024

Person standing behind a container with signal illustration

How asset tracking drives risk management and lower insurance costs

Learn how asset trackers improve risk management and reduce insurance costs in transportation and logistics, featuring expert insights from Marsh, a leader in insurance and risk advice.

February 15, 2024

multiple vehicles on the road

What is ADAS?

ADAS are in-vehicle technologies designed to enhance vehicle safety and assist the driver in better controlling the vehicle.

January 12, 2024